Working with XArray

There are two functions for working with XArray Datasets, one for converting a CDF to a DataSet, and one for going the other way. To use these you need the xarray package installed.

These will attempt to determine any ISTP Compliance, and incorporate that into the output.

cdflib.cdf_to_xarray(filename, to_datetime=False, to_unixtime=False, fillval_to_nan=False)[source]

This function converts CDF files into XArray Dataset Objects.

Parameters
  • filename (str) – The path to the CDF file to read

  • to_datetime (bool, optional) – Whether or not to convert CDF_EPOCH/EPOCH_16/TT2000 to datetime, or leave them as is

  • to_unixtime (bool, optional) – Whether or not to convert CDF_EPOCH/EPOCH_16/TT2000 to unixtime, or leave them as is

  • fillval_to_nan (bool, optional) – If True, any data values that match the FILLVAL attribute for a variable will be set to NaN

Returns

An XArray Dataset Object

Example MMS:
>>> #Import necessary libraries
>>> import cdflib
>>> import xarray as xr
>>> import os
>>> import urllib.request
>>> #Download a CDF file
>>> fname = 'mms2_fgm_srvy_l2_20160809_v4.47.0.cdf'
>>> url = ("https://lasp.colorado.edu/maven/sdc/public/data/sdc/web/cdflib_testing/mms2_fgm_srvy_l2_20160809_v4.47.0.cdf")
>>> if not os.path.exists(fname):
>>>     urllib.request.urlretrieve(url, fname)
>>> #Load in and display the CDF file
>>> mms_data = cdflib.cdf_to_xarray("mms2_fgm_srvy_l2_20160809_v4.47.0.cdf", to_unixtime=True, fillval_to_nan=True)
>>> print(mms_data)
>>> # Show off XArray functionality
>>>
>>> # Slice the data using built in XArray functions
>>> mms_data2 = mms_data.isel(dim0=0)
>>> # Plot the sliced data using built in XArray functions
>>> mms_data2['mms2_fgm_b_gse_srvy_l2'].plot()
>>> # Zoom in on the slices data in time using built in XArray functions
>>> mms_data3 = mms_data2.isel(Epoch=slice(716000,717000))
>>> # Plot the zoomed in sliced data using built in XArray functionality
>>> mms_data3['mms2_fgm_b_gse_srvy_l2'].plot()
Example THEMIS:
>>> #Import necessary libraries
>>> import cdflib
>>> import xarray as xr
>>> import os
>>> import urllib.request
>>> #Download a CDF file
>>> fname = 'thg_l2_mag_amd_20070323_v01.cdf'
>>> url = ("https://lasp.colorado.edu/maven/sdc/public/data/sdc/web/cdflib_testing/thg_l2_mag_amd_20070323_v01.cdf")
>>> if not os.path.exists(fname):
>>>     urllib.request.urlretrieve(url, fname)
>>> #Load in and display the CDF file
>>> thg_data = cdflib.cdf_to_xarray(fname, to_unixtime=True, fillval_to_nan=True)
>>> print(thg_data)
Processing Steps:
  1. For each variable in the CDF file
    1. Determine the name of the dimension that spans the data “records”
      • Check if the variable itself might be a dimension

      • The DEPEND_0 likely points to the approrpiate dimensions

      • If neither of the above, we create a new dimensions named “recordX”

    2. Determine the name of the other dimensions of the variable, if they exist
      • Check if the variable name itself might be a dimension

      • The DEPEND_X probably points to the appropriate dimensions for that variable, so we check those

      • If either of the above are time varying, the code appends “_dim” to the end of the name

      • If no dimensions are found through the above checks, create a dumension named “dimX”

    3. Gather all attributes that belong to the variable

    4. Add a few attributes that enable better plotting with built-in xarray functions (name, units, etc)

    5. Optionally, convert FILLVALs to NaNs in the data

    6. Optionally, convert CDF_EPOCH/EPOCH16/TT2000 variables to unixtime or datetime

    7. Create an XArray Variable object using the dimensions determined in steps 1 and 2, the attributes from steps 3 and 4, and then the variable data

  2. Gather all the Variable objects created in the first step, and separate them into data variables or coordinate variables

  3. Gather all global scope attributes in the CDF file

  4. Create an XArray Dataset objects with the data variables, coordinate variables, and global attributes.

cdflib.xarray_to_cdf(xarray_dataset, file_name, from_unixtime=False, from_datetime=False, istp=True, record_dimensions=[], compression=0)[source]

This function converts XArray Dataset objects into CDF files.

Parameters
  • xarray_dataset (xarray.Dataset) – The XArray Dataset object that you’d like to convert into a CDF file

  • file_name (str) – The path to the place the newly created CDF file

  • to_datetime (bool, optional) – Whether or not to convert variables named “epoch” or “epoch_X” to CDF_TT2000 from datetime objects

  • to_unixtime (bool, optional) – Whether or not to convert variables named “epoch” or “epoch_X” to CDF_TT2000 from unixtime

  • istp (bool, optional) – Whether or not to do checks on the Dataset object to attempt to enforce CDF compliance

  • record_dimensions (list of str, optional) – If the code cannot determine which dimensions should be made into CDF records, you may provide a list of them here

  • compression (int, optional) – The level of compression to gzip the data in the variables. Default is no compression, standard is 6.

Returns

None, but generates a CDF file

Example CDF file from scratch:
>>> # Import the needed libraries
>>> import cdflib
>>> import xarray as xr
>>> import os
>>> import urllib.request
>>> # Create some fake data
>>> var_data = [[1, 2, 3], [1, 2, 3], [1, 2, 3]]
>>> var_dims = ['epoch', 'direction']
>>> data = xr.Variable(var_dims, var_data)
>>> # Create fake epoch data
>>> epoch_data = [1, 2, 3]
>>> epoch_dims = ['epoch']
>>> epoch = xr.Variable(epoch_dims, epoch_data)
>>> # Combine the two into an xarray Dataset and export as CDF (this will print out many ISTP warnings)
>>> ds = xr.Dataset(data_vars={'data': data, 'epoch': epoch})
>>> cdflib.xarray_to_cdf(ds, 'hello.cdf')
>>> # Add some global attributes
>>> global_attributes = {'Project': 'Hail Mary',
>>>                      'Source_name': 'Thin Air',
>>>                      'Discipline': 'None',
>>>                      'Data_type': 'counts',
>>>                      'Descriptor': 'Midichlorians in unicorn blood',
>>>                      'Data_version': '3.14',
>>>                      'Logical_file_id': 'SEVENTEEN',
>>>                      'PI_name': 'Darth Vader',
>>>                      'PI_affiliation': 'Dark Side',
>>>                      'TEXT': 'AHHHHH',
>>>                      'Instrument_type': 'Banjo',
>>>                      'Mission_group': 'Impossible',
>>>                      'Logical_source': ':)',
>>>                      'Logical_source_description': ':('}
>>> # Lets add a new coordinate variable for the "direction"
>>> dir_data = [1, 2, 3]
>>> dir_dims = ['direction']
>>> direction = xr.Variable(dir_dims, dir_data)
>>> # Recreate the Dataset with this new objects, and recreate the CDF
>>> ds = xr.Dataset(data_vars={'data': data, 'epoch': epoch, 'direction':direction}, attrs=global_attributes)
>>> os.remove('hello.cdf')
>>> cdflib.xarray_to_cdf(ds, 'hello.cdf')
Example netCDF -> CDF conversion:
>>> # Download a netCDF file (if needed)
>>> fname = 'dn_magn-l2-hires_g17_d20211219_v1-0-1.nc'
>>> url = ("https://lasp.colorado.edu/maven/sdc/public/data/sdc/web/cdflib_testing/dn_magn-l2-hires_g17_d20211219_v1-0-1.nc")
>>> if not os.path.exists(fname):
>>>     urllib.request.urlretrieve(url, fname)
>>> # Load in the dataset, and set VAR_TYPES attributes (the most important attribute as far as this code is concerned)
>>> goes_r_mag = xr.load_dataset("C:/Work/cdf_test_files/dn_magn-l2-hires_g17_d20211219_v1-0-1.nc")
>>> for var in goes_r_mag:
>>>     goes_r_mag[var].attrs['VAR_TYPE'] = 'data'
>>> goes_r_mag['coordinate'].attrs['VAR_TYPE'] = 'support_data'
>>> goes_r_mag['time'].attrs['VAR_TYPE'] = 'support_data'
>>> goes_r_mag['time_orbit'].attrs['VAR_TYPE'] = 'support_data'
>>> # Create the CDF file
>>> cdflib.xarray_to_cdf(goes_r_mag, 'hello.cdf')
Processing Steps:
  1. Determines the list of dimensions that represent time-varying dimensions. These ultimately become the “records” of the CDF file
    • If it is named “epoch” or “epoch_N”, it is considered time-varying

    • If a variable points to another variable with a DEPEND_0 attribute, it is considered time-varying

    • If a variable has an attribute of VAR_TYPE equal to “data”, it is time-varying

    • If a variable has an attribute of VAR_TYPE equal to “support_data” and it is 2 dimensional, it is time-varying

  2. Determine a list of “dimension” variables within the Dataset object
    • These are all coordinates in the dataset that are not time-varying

    • Additionally, variables that a DEPEND_N attribute points to are also considered dimensions

  3. Optionally, if ISTP=true, automatically add in DEPEND_0/1/2/etc attributes as necessary

  4. Optionally, if ISTP=true, check all variable attributes and global attributes are present

  5. Convert all data into either CDF_INT8, CDF_DOUBLE, CDF_UINT4, or CDF_CHAR

  6. Optionally, convert variables with the name “epoch” or “epoch_N” to CDF_TT2000

  7. Write all variables and global attributes to the CDF file!

ISTP Warnings:

If ISTP=true, these are some of the common things it will check:

  • Missing or invalid VAR_TYPE variable attributes

  • DEPEND_N missing from variables

  • DEPEND_N/LABL_PTR/UNIT_PTR/FORM_PTR are pointing to missing variables

  • Missing required global attributes

  • Missing an “epoch” dimension

  • DEPEND_N attribute pointing to a variable with oncompatible dimensions